python pandas parse_dates column wildcard for sqlalchemy in pandas 0.14.1? -
i'm using sqlalchemy
allows sql queries released 0.14.1 version of pandas.
import pandas pd dateutil import parser sqlalchemy import create_engine import datetime a=[['datetime', 'now date', 'numbers', 'mixed'], ['1/2/2014', datetime.datetime.now(),6, 'z1'], ['1/3/2014', datetime.datetime.now(), 3, 'z1']] df = pd.dataframe(a[1:],columns=a[0]) df['datetime']=df['datetime'].map(lambda x: parser.parse(x)) engine=create_engine('sqlite:///:memory:') df.to_sql('db_table',engine, index=false) df_new=pd.read_sql_query("select * db_table ",engine) >>> df.dtypes datetime datetime64[ns] date datetime64[ns] numbers int64 mixed object dtype: object >>> df_new.dtypes datetime object date object numbers int64 mixed object dtype: object
as can see, original datetime
format lost when feeding engine. pandas gives way parsing.
df_new=pd.read_sql_query("select * db_table ",engine, parse_dates=['datetime','now date']) >>> df_new.dtypes datetime datetime64[ns] date datetime64[ns] numbers int64 mixed object dtype: object
the problem i'm feeding different kinds of datetimes
engine different column names, can't manually specify each column name. have many things parse , changing. i'm looking solution equivalent of this:
df_new=pd.read_sql_query("select * db_table ",engine, parse_dates=['*date*'])
sqlite has no date or datetime type. datetime values stored strings , when fetching query come strings.
there different options here deal this:
use
read_sql_table
instead ofread_sql_query
(if need "select * ..." or columns, , need no clause). use information in table schema , detect datetime columns , convert them (sqlalchemy this):in [13]: df_new2 = pd.read_sql_table("db_table",engine) in [15]: df_new2.dtypes out[15]: datetime datetime64[ns] date datetime64[ns] numbers int64 mixed object dtype: object
you can specify
sqlite3.parse_decltypes
(see docs or question: how read datetime sqlite datetime instead of string in python?) when using sqlite connection:in [33]: con = sqlite3.connect(':memory:', detect_types=sqlite3.parse_decltypes) in [34]: df.to_sql('db_table', con, index=false) in [35]: df_new = pd.read_sql_query("select * db_table",con) in [36]: df_new.dtypes out[36]: datetime datetime64[ns] date datetime64[ns] numbers int64 mixed object dtype: object
this not seem work nice sqlalchemy (http://docs.sqlalchemy.org/en/rel_0_9/dialects/sqlite.html#compatibility-with-sqlite3-native-date-and-datetime-types)
you can parsing afterwards, automatically on columns contain 'date':
in [45]: date_cols = [col col in df.columns if 'date' in col] in [47]: col in date_cols: ....: df[col] = pd.to_datetime(df[col]) ....:
Comments
Post a Comment